Система контроля геометрических параметров рам тележек ЛИС-РТ-3 - измерительный комплекс, обеспечивающий геометрический контроль рам тележек электровозов и тепловозов, установленных на предварительно отгоризонтированных опорах и забазированных в координатах измерительной системы с учетом имеющихся баз (конструкторских, технологических и др.). Измерение размеров объекта осуществляется с помощью видимых лазерных пучков параллельным перемещением их вдоль опорных линеек с одновременным отсчетом координат. Лазерные пучки формируют в рабочем измерительном пространстве прямоугольную систему координат X, У и базовую горизонтальную плоскость. Координата 2 формируется нивелиром с лазерным визиром и штангенрейкой с целевым знаком.
ЛИС-РТ-3 обеспечивает 2 режима отсчета по координатам X и У:
визуально-механический с помощью оснастки с целевым знаком, штриховой меры и индикатора часового типа ИЧ-10 ГОСТ 577/68* встроенного в устройство поворота пучка (УГШ). Ввод расчетных параметров в протокол измерения осуществляется вручную;
автоматизированного с помощью электронного блока - устройства цифрового отсчета и ввода в ПЭВМ с последующей обработкой данных измерений и представления результатов расчета измеряемых геометрических параметров визуально на экране монитора в виде протокола и указаний по ремонту с возможностью выдачи результатов на печать или для запоминания в электронном виде.
Схема расположения модулей и устройств системы представлена на рисунке 14.
Измерительный комплекс выполнен в виде двух взаимно перпендикулярных, создающих рабочее измерительное пространство, линеек ЛКЛ (продольной X и поперечной У). Оно создается путем поворота на 90° продольных (базовых) лазерных пучков. Повернутые пучки являются измерительными.
Рис. 14 Схема расположения модулей и устройств системы ЛИС-РТ-3
1 - линейка ЛКЛ; 2 - блок излучающий; 3 - блок питания; 4 - устройство поворота пучка на 90° (УПП); 5 - штангенрейка; 6 - нивелир; 7 - опора; 8 - базовый целевой знак; 9 -шкаф.
Измерение по координате У обеспечивается нивелиром с лазерным визиром, формирующим базовую горизонтальную плоскость из лазерного пучка, и штангенрейкой с целевым знаком.
Лазерные пучки от излучателя 2 (рисунок 14) встраиваются в центры марок мишеней базовых целевых знаков, устанавливаемых на конце линеек в отверстия пластин-крышек направляющих координатных линеек 1.
Направляющие линеек оснащены штриховыми мерами длины, размещенными вдоль опорных лазерных пучков, и датчиками линейных перемещений, преобразующих линейное перемещение в электрические импульсы. На направлящих размещено устройство поворота базового лазерного пучка (УПП) 4. УПП вводится в полозья направляющей линейки и перемещается вдоль нее, обеспечивая параллельный перенос в пространстве лазерного пучка, перпендикулярно базовым направлениям X и У.
Перемещение устройства поворота пучка осуществляется вручную, а отсчет координат производится с помощью персонального компьютера или штриховой меры длины.
Основные компоненты системы:
а) Излучатель лазерный ИЛ-2
В состав излучателя лазерного ИЛ-2 входят излучающий модуль и блок питания.
Излучатель предназначен для создания взаимно-перпендикулярных лазерных пучков, являющихся базовыми пучками по направлениям осей X и Y. Общий вид излучающего модуля и его конструктивные элементы показаны на рисунке 2.
Рис.15 Излучающий модуль
1- корпус; 2- основание; 3- лазер ЛГН-225; 4- коллиматор; 5- пентапризма; 6-конусные кольца фиксации лазера; 7- крепежно-юстировочные винты; 8 - взаимно - перпендикулярные пучки (В - продольный лазерный пучок, Г — поперечный лазерный пучок); 9- винт вертикального перемещения продольного лазерного пучка; 10-винт горизонтального перемещения продольного и поперечного лазерных пучков; 11- винт вертикального перемещения поперечного пучка; 12- винт перемещения поперечного лазерного пучка в горизонтальной плоскости; 13- площадка излучающего модуля; 14- ручка с винтом крепления; 15- боковой упор; 16- поперечный упор; 17- прижим; 18- винт вертикальных перемещений излучающего модуля.
Излучающий модуль состоит из корпуса 1, шарнирно закрепленного на основании 2. В корпусе 1 размещены лазер 3, коллиматор 4 и пентапризма 5. Лазер 3 зафиксирован в конусных кольцах 6, которые определяют положение лазера в корпусе 1. Коллиматор 4 служит для формирования кольцевой структуры лазерного пучка. Для равномерного распределения интенсивности излучения по кольцевой структуре лазерного пучка ось коллиматора 4 совмещается с осью лазера 3 крепежно-юстировочными винтами 7. Пентапризма 5 служит для формирования двух взаимно перпендикулярных лазерных пучков равной интенсивности: пучка «В» и пучка «Г», перпендикулярного пучку «В». Пучки «В» и «Г» являются базовыми по осям X и Y. Отклонение пучка «В» в вертикальной плоскости осуществляется путем поворота винта 9. Отклонение пучка «Г» в вертикальной и горизонтальной плоскостях осуществляется путем поворота винтов 11 и 12 соответственно. Ручка с винтом крепления 14, прижим 17 и боковой упор 15 в совокупности предназначены для фиксированной установки излучающего модуля на площадке 13 (рисунок 15). Поперечный упор 16 необходим для обеспечения заданного продольного положения основания 2. Винты 18 используются при монтаже для вертикального перемещения излучателя.
Похожие статьи:
Расчет третьего периода топливоподачи
Третий период длится от момента подъема иглы распылителя форсунки, когда начинается впрыскивание топлива в цилиндр двигателя через распыливающие отверстия распылителя, до начала отсечки, т.е до момента начала перетекания топлива из надплунжерной полости в отсечные отверстия плунжерной пары. Отсечку ...
Составление диаграммы пригородного пассажиропотока
Размеры движения поездов в значительной мере определяют эффективность и качество перевозочного процесса. Расчетный пассажиропоток для графика движения устанавливают путём периодически проводимых исследований, при которых определяют уровень подвижности населения промышленных и сельскохозяйственных р ...
Скорость истечения газа из выходного устройства. Коэффициенты полезного
действия винта и редуктора
Скорость истечения газа вертолетного ГТД характеризует потерянную кинетическую энергию на выходе из двигателя, поэтому ее целесообразно было бы уменьшать до нуля. С другой стороны, при очень малых значениях чрезмерно растут габариты двигателя из-за большой площади среза выпускного канала. Учитывая ...