Аналитический обзор существующих методов и подходов к планированию групповых действий

Информация » Разработка алгоритмов поиска оптимального маршрута для БЛА при наблюдении им подвижных наземных объектов » Аналитический обзор существующих методов и подходов к планированию групповых действий

Страница 6

Существует множество подходов к решению данной задачи, среди которых есть только два универсальных – это генетические алгоритмы и метод полного перебора, которые будут описаны в пункте 1.1.2. Остальные же методы решения данной задачи решают его лишь приближенно в общем случае. Рассмотрим один из таких методов – метод кластеризации.

Данный метод описан в работе [4]. В данной работе предлагается сначала провести кластеризацию всех объектов по методу k-средних. Этот метод заключается в том, что все объекты разбиваются на количество кластеров k, равное количеству БЛА следующим образом:

случайным образом на поле решения задачи выбрасывается k точек, которые являются центрами кластеров (центроидами);

каждый объект заносится в кластер того центроида, к которому он находится ближе всего;

после того, как все объекты занесены в кластеры, позиции центроидов пересчитываются таким образом, чтобы суммарное расстояние до всех объектов оказалось минимальным;

шаги 2 и 3 повторяются до тех пор, пока центроиды не перестанут передвигаться.

Таким образом, алгоритм выделяет группы объектов, которые максимально схожи внутри себя, но при этом максимально различны между собой.

После проведения кластеризации к объектам внутри каждого кластера применятся алгоритм «упаковки», суть которого заключается в том, чтобы перевести координаты каждого из объектов в полярные, а замет отсортировать их по углу поворота, а затем по радиусу в порядке возрастания. Таким образом, получается некоторая последовательность облета объектов, которая будет оптимизироваться на следующих шагах.

К полученной последовательности применяется алгоритм имитации отжига (алгоритм поиска минимума некоторой функции), целевой функцией которого является время облета объектов в заданной последовательности.

Последним шагом данного метода является применение алгоритма поиска «Tabu search», суть которого сводится к тому, что в случае, если алгоритм находит решение, которое потенциально является оптимальным, он «запрещает» его, и «разрешает» движение в сторону максимизации времени полета БЛА. Таким образом, алгоритм препятствует «застреванию» поиска в локальных минимумах.

Сильные стороны:

применение множества способов препятствования попаданию в локальные минимумы.

Слабые стороны:

исключение взаимодействия между БЛА;

применяется сразу несколько методов поиска и оптимизации, что существенно увеличивает время расчета;

метод применим только для неподвижных объектов.

Страницы: 1 2 3 4 5 6 

Похожие статьи:

Схема стрелочных управляющих реле
Воздействие маршрутного набора на исполнительную группу реле производится в точках, обусловленных унифицированным принципом построения ее схем. Унификация заключается в том, что необходимые цепи строятся по плану станции общими для поездных и маневровых маршрутов, разветвление их на стрелках осущес ...

Разработка нейронной сети – аналога модуля «Поиск оптимального маршрута для одного БЛА»
Для замены модуля «Поиск оптимального маршрута для одного БЛА» будем использовать нейронную сеть с прямыми связями (feedforward network) с одним скрытым слоем, на вход которой будут подаваться следующие значения: относительные координаты по оси X для каждого объекта (Дx); относительные координаты п ...

Тяговый редуктор
Вращающий момент от якоря тягового электродвигателя на ось колесной пары передается через тяговый редуктор, состоящий из ведущей шестерни и большого зубчатого колеса. Ведущая шестерня, имеющая 15 прямых зубьев, напрессована на коническую часть вала якоря. Ведомая шестерня (большое зубчатое колесо) ...

Навигация

Copyright © 2024 - All Rights Reserved - www.localtransport.ru