Вследствие рассмотренных выше недостатков раздельного регулирования теплового двигателя и генератора в современных тепловозах широкое распространение получили системы регулирования, в которых регулятор теплового двигателя и регулятор генератора кинематически связаны между собой.
Применяются различные способы выполнения таких регуляторов. В одних системах регулятор теплового двигателя по существу остается без изменения, но на его выходном штоке, соединенном с регулирующим органом теплового двигателя (например, с рейками топливных насосов дизеля), добавляется рычаг, приводящий в действие регулятор генератора. При токах нагрузки меньше Iг мин и других режимах работы, когда генератор не может полностью нагрузить тепловой двигатель, регулятор генератора не действует, находясь в положении, соответствующем наибольшему возбуждению. При этом регулятор теплового двигателя поддерживает постоянную угловую скорость двигатель-генератора, изменяя подачу топлива. Когда подача топлива достигает наибольшей допустимой величины, шток регулятора при дальнейшем перемещении приводит в действие регулятор генератора, изменяющий возбуждение последнего так, чтобы угловая скорость и подача топлива поддерживались постоянными.
Такое соединение регуляторов можно назвать каскадным, так как выходной – исполнительный орган регулятора теплового двигателя – является одновременно входным органом регулятора генератора. Оба регулятора могут представлять собой отдельные конструкции со своими усилительными, преобразовательными и исполнительными органами. В некоторых системах они объединены в одну общую конструкцию, но и в этом случае можно в ней выделить узлы, относящиеся к каждому из регуляторов. Процесс регулирования всегда начинается с отклонения угловой скорости в результате изменения нагрузки двигатель-генератора или настройки регулятора теплового двигателя, что приводит последний в действие, а в зависимости от положения исполнительного органа меняется подача топлива или возбуждение генератора или то и другое одновременно. При каскадном соединении необходима взаимная настройка обоих регуляторов.
Применяются также системы, в которых имеется один общий регулятор, исполнительный орган которого соединен непосредственно с регулирующими органами теплового двигателя и генератора так, что при увеличении потребляемой мощности генератора исполнительный орган сначала увеличивает подачу топлива до наибольшей величины, а затем уменьшает возбуждение генератора.
Существует достаточно большое количество вариантов исполнения объединённых регуляторов, построенных на различных принципах работы: угольный гидравлический регулятор, вибрационный регулятор, гидравлический регулятор с гибкой обратной связью, электрогидравлический объединенный регулятор, объединенные регуляторы с индуктивными датчиками, бесконтактный регулятор мощности и т.д.
Ниже рассмотрены принципиальные схемы устройства и принцип действия некоторых из применяемых на современных локомотивах систем регулирования.
Гидравлический объединённый регулятор с гибкой обратной связью
На рис. 3 изображена упрощенная принципиальная схема регулятора с гибкой обратной связью. В качестве регулятора дизеля применен изодромный гидромеханический регулятор.
Регулятор генератора состоит из золотникового устройства, гидравлического сервомотора и регулировочного реостата РР. Регулировочный реостат включен в цепь управления регулировочной обмотки магнитного усилителя (МУ) – на схеме не показан. Золотниковый плунжер 6 шарнирно связан с ломаным рычагом АВСDЕ, который в свою очередь, соединен в шарнире Е с тягой 11, связанной с поршнем сервомотора 12 и выходным штоком 13 регулятора дизеля, а в шарнире А с поршнем 3, являющимся органом настройки регулятора.
Рассмотрим работу регулятора при настройке регулятора на номинальную скорость при неизменном положении поршня 3. Положение регулятора на рис. 3 соответствует установившемуся режиму работы дизеля, причем выходной шток 13 занимает положение, соответствующее полной подаче топлива. При увеличении нагрузки угловая скорость дизель-генератора снижается, грузы сходятся и шток 13 поднимается в сторону увеличения подачи топлива. При этом рычаг СЕ поворачивается против часовой стрелки, золотниковый плунжер 6 поднимается, открывая доступ рабочей жидкости в цилиндр над поршнем 10 сервопривода регулятора генератора. Поршень 10 и движок 9 опускаются, уменьшая ток в регулировочной обмотке управления МУ. В результате этого уменьшается ток возбуждения, а следовательно, и нагрузка генератора.
Похожие статьи:
Импульсный газотурбинный наддув
При импульсном газотурбинном наддуве, как уже было сказано выше, используется кинетическая энергия выходящих из цилиндров газов. Для этого необходимы отдельные выпускные трубопроводы и рекомендуемые многоструйные впускные корпуса турбин. Для подводки выпускных трубопроводов при этом соответственно ...
Тактико-технические
данные т/х «Пархоменко»
Навигационное оснащение судна Радиопеленгатор «Румб» Общие сведения. Радиопеленгатор «Румб» — двухканальный визуальный радиопеленгатор с коммутацией каналов — предназначен для определения места судна по навигационным радиомаякам всех типов и для определения направлений на береговые радиостанции нен ...
Датчик скорости вращения колеса
Снятие и установка 1 – разъем; 2 – болт; 3 – датчик 1. Отсоедините батарею от массы. 2. Отсоедините от датчика давления разъем проводов. 3. Отверните болт и снимите датчик. 4. Установка выполняется в обратном порядке. Затяните болт с моментом 22 Н.м. ...